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ABSTRACT

Climate change and extreme climate events have a signifiogatt on societies and ecosystems.
As a result, climate change projections, especially relatéd extreme temperature events, has
gained increasing importance due to their impacts on the welibainthe population and
ecosystems. However, most studies in the field are basedacseaglobal climate models (GCMs).
In this study, we perform a high resolution downscaling simulation ttuaearecent trends of
extreme temperature indices. The model used was Weatharé&tesad Forecast (WRF) forced by
MPI-ESM-LR, which has been shown to be one of the more robust mimdsisulate European
climate. The domain used in the simulations includes the Ibeeaim$ula and the simulation covers
the 1986 — 2005 period (i.e. recent past). In order to study extrerpersgore events, trends were
computed using the Theil-Sen method for a set of temperature sndefieed by the Expert Team
on Climate Change Detection and Indices (ETCCDI). For thidy dalues of minimum and
maximum temperatures were used. The trends of the indexesevepaited for annual and seasonal
values and the Mann-Kendall Trend test was used to evaluatstttestical significance. In order to
validate the results, a second simulation, in which WRFferaed by ERA-Interim, was performed.
The results suggest an increase in the number of warm days amdnigdats, especially during
summer and negative trends for cold nights and cold days for the s@ndhepring. For the winter,
contrary to the expected, the results suggest an increassdirdays and cold nights (warming
hiatus). This behavior is supported by the WRF simulation forced by-lBfeAm for the autumn
days, pointing to an extension of the warming hiatus phenomenonrentia@ing seasons.
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1. Introduction

The Special Report on Extreme Events (SREX) of the IntergovetamBanel on Climate
Change (Field, 2012) mentions evidence that some extremes hawged as a result of
anthropogenic influences, including increases in atmospheric comoemérof greenhouse gases. As
such, it is probable that anthropogenic influences have led tccesage in extreme minimum and
maximum daily temperatures, on a global scale. Extreme tatoperevents can impact many
aspects of human life, such as mortality, health, comforigdgre and hydrology (Ciais et al 2005;
Garcia-Herrera et al., 2005; Brown et al., 2008; Patz g2@05). There is growing evidence that
extreme events will become more frequent and more sevéhe iiuture (e.g., Kharin and Zwiers,
2000). For this reason, solid projections of changes in the temgem®ttremes become more
important, and have seen an increase in the last decade. Irfamitieate the analysis of observed
and predicted extremes in, not only temperature, but also in pagicpichange, the joint World
Meteorological Organization Commission for Climatology (CCl)/Worllimate Research
Programme (WCRP) project on Climate Variability and Prediital{CLIVAR) Expert Team on
Climate Change Detection and Indices (ETCCDI) has defined of stimate indices (Karl et al.,
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1999; Peterson et al., 2001). These indices enable a consistentrisomgzetween analyses
performed anywhere in the world and promote the analysis of extrathesver the world,
particularly in less developed countries, by organizing regional idhetzange workshops (Zang et
al., 2011).

Alexander et al. (2006) noted, that in a great part of the glohdl tleere was a significant
decrease in the annual occurrence of cold nights between 1951 and 2808, Bome regions
might have become less cold, instead of warmer. The study peddayneéoberg et al. (2006) over
Europe shows that global conclusions made by Alexander et al. (2006ptarepresentative of
Europe. They showed a warming both in the daily minimum temperatdréha daily maximum
temperature, in agreement with a previous study by Moberg and J&@&3. (i addition, there are
large regional differences in the temperature trend pattamna. drevious study conducted Klein
Tank and Konnen (2003), a pronounced warming between 1976 and 1999 is mentinolds
mainly associated an increase in warm extremes rathemtith a decrease in cold extremes. Over
Europe, large scale atmospheric circulation patterns, sudiedsarth Atlantic Oscillation (NAO)
(the most important pattern over Europe), mainly affects theemiamperatures (Efthymiadis et al.,
2011; Espirito Santo et al., 2014). Efthymiadis et al. (2011) reétrcold extremes are associated
with positive NAO phases. In recent studies, a discrepancy éetweserved and simulated trends in
global mean surface temperature has been observed, leading tstuthes on this phenomenon,
such as the ones conducted by Easterling et al. (2009), Meeh(20H1) or Silmann et al. (2014).
These periods are referred to in the literature as hipgu®ds (Meehl et al.,, 2011), and are
characterized by little or no warming trend, and are mostynger phenomenon (Kosaka and Xie,
2013). Meehl et al. (2011) indicated the 2000-2009 period as a hiatud. feeimently, Silmann et al.
(2014) reported that the largest discrepancy between observedranated trends in cold extremes
(temperature minimum) is found in the Northern mid-latitudes (26- 2% °N), where observations
indicate a coherent zonal band of decreasing trends between 1996 and 20MerHS@reeviratne et
al. (2014) showed that hot extremes have continued to warm déspgbal warming hiatus.

Global Climate Models (GCMs) are a fundamental tool fordiuely of future climate and are
able to capture climate phenomena on a continental or sub-continead&al(Schliep et al. 2010).
They provide data either to estimate large-scale aspectsnafte change, to drive regional climate
models or to be used directly by impact models (Barfus, @0al). The fifth phase of the Coupled
Model Intercomparison Project (CMIP5) has made available lang-&mulations for the 20th
century climate and projections for the 21st (Taylor, et al. 20@R)ylich using a set of emission
scenarios, referred to as Representative Concentration RatlfR@Ps) were used (Moss et al.,
2010). This has increased our knowledge of climate variability anatdichange. Even though
GCMs, such as those used in CMIP5, provide useful informatioi, &sidn the works done by
Sillmann et al. (2013a) and Sillmann et al. (2013b), their low-néisal does not allow for climate
change evaluation at a local scale. Regional Climate M&Ms) are used to simulate the space-
time variability of climate change with greater precisibant GCMs. Currently, the downscaling
technigues in use nest the RCM within the GCM, allowing sitimna over a smaller area with
higher resolution. This comes at the expense of limiting the modwidcsize, i.e. by focusing over
a limited area. According to Brands et al. (2013), the MPI-ERvmodel has the best performance
for simulating the temperature over Europe.

Several studies have been carried out to explore temperatinegnes in the Mediterranean
region (e. g. Kuglitsch et al., 2010) and in Spain (e. g. EstPham et al., 1995; Cruz and Lage,
2006; Brunet et al., 2007; Del Rio et al., 2007; Martinez e2@1.0;). However, although there are
already some studies for the Iberian Peninsula (such as RodrigelezPet al.,, 2010;
FernandedMontes et al., 2012), these studies feature few stationshéoMtestern part of the
Peninsula (Portugal). The same happens with the publicly bleai@ta source ECA&D (European
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Climate Assessment & Data set website http://eca.knilenh Tank et al., 2002) which includes
199 stations for several European countries but with a reduced nahsbations over Portugal.

In this paper, we analyses the results of a downscaling simulatevatuate the high resolution
recent trends of extreme temperature indices over the IbeenmdRla. The WRF simulations
forced by ERA-Interim and MPI data, covering the period from 1986 @&.20arvalho et al. (2014)
compared WRF model results forced with several reanalysiscampared model performance in
terms of wind. That study found ERA- Interim as the best WRFeover Iberian Peninsula.

The paper is organized as follows: Section 2 details the sttey model data basics and the
methods applied. The results are presented in Section hgtaviih changes in hot and cold
extremes. The conclusions are given in Section 4.

2. Data and Methods

2.1. Study Area

The region of study is the Iberian Peninsula, located in the southwestrt of Europe (Fig.
1). Its topography is complex with mountains and elevations, more ndtabli?yrenees, which
connect the Peninsula with France, and reach an altitude oy 13d®0 meters and Sierra Nevada
(located in the south of Spain) with of approximately 3500 meters.

The north and west are under influence of the Atlantic Ocear wiel south is influenced by
the Mediterranean Sea. The rest of the area is coasttider the influence of the Atlantic Ocean in
the North and the West, and the Mediterranean Sea in the. Sbugtregion is usually influenced by
the cold temperatures of the Atlantic Ocean and the warm tatnpes over the Mediterranean Sea
and the Sahara desert. The region’s particular geography promoigsed climate gradient from
the north to the south, as well as diurnal and seasonal therrdedrgsafrom the coastal areas to the
center of the Iberian Peninsula (Dasari et al. 2014). Thermiperatures near the surface, especially
the cold extremes, are associated with the East Atlamdderand with the NAO pattern, which is
more intense in the Northern Hemisphere (Espirito Santq @044)).

2.2. Regional Simulations

The daily minimum and maximum surface air temperatures used smnulated by the
regional model WRKWeather Research and Forecasting) (Skamarock et al., 2008). The initial and
boundary conditions used by the RCM were supplied by the (1) MPI-ESM-LUR (a¢ rlilpl
initialization), which is a GCM with 200 km (1.8750 °) spatiasolution (both in latitude and
longitude) and 6-hourly temporal sampling; (2) Era-Interim, with a°Ohsizontal resolution and
the same 6-hourly temporal sampling. This simulation was foradBRA-Interim to evaluate the
performance of the MPI as a driver for WRF. The ERA-Intasrtihe most recent reanalysis data set
provided by the ECMWF and contains selected improvements on the ERA-A@sstepresentation
of the hydrological cycle, the quality of the stratospheric citmraand the consistency in time of
the reanalyzed fields (Dee et al., 2011).

The simulation domains are show in Fig. 1 with 9 km of spatial uBen| covering the Iberian
Peninsula and a portion of the North-Western Atlantic Ocean,angititude and longitude ranging
from 33° to 45°N and 12°W to 5.5°E, respectively. The tempiwaiain of simulated data covers
the 1986 — 2005 period (i.e. recent past) (see Marta-Alnetidh, 2015).

2.3. Methods

In this work, the main goal is to explore the changes in surémaperature extremes, related with
extreme cold and hot temperature events. There are sevetadwndb define and characterize
extreme temperature events. The approach used in this studgltate these changes in extreme
temperature events was the annual and seasonal analysis reinthe df the indices of extremes in
daily minimum (TN) and maximum (TX) air temperature.
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2.3.1. Indices

In Table 1, a description of the 17 indices based on the TN and fi€dented, as defined by a
team of ETCCDI experts. These indices have been usedvémasestudies about changes in the
temperature extremes (http://etccdi.pacificclimate.orgfisgt indices.shtml). The indices can be
divided in 4 (Alexander et al., 2006): (1) Percentile, (2) Threst{8)dAbsolute and (4) Duration-
based. In general, the percentile-based indices are defirdayaover the warmest/coldest long-
term percentiles, which include the occurrence of hot days (TX9@m nights (TN90p), cold
days (TX10p) and cold nights (TN10p). Threshold indices are defineddeasuimber of days in
which a maximum or minimum temperature falls above or below d t@shold. These include the
annual or seasonal occurrence of frost days (FD), ice daysqliD)mer days (SU) and tropical
nights (TR). Absolute indices represent maximum or minimum salithin a season or year. They
include maximum daily maximum temperature (TXx), maximum daily mimn temperature (TNX),
minimum daily maximum temperature (TXn) and minimum daily minimi@mperature (TNn).
Duration indices define periods of excessive warmth (WSDI) anthests (CSDI). There are other
indices, such as diurnal temperature range (DTR) and extremertdnme range (ETR) that is
computed from TXx and TNn. The reference period considered in this faotke calculation of
percentile indices, is the reference period between 1988G0H

Every index is computed for the WRF grid forced by the MPI-ESM-LRIJMRd Era-interim
(ERA) simulations. The analysis performed was restricted fimwaindices, after considering the
relevance of the entirety of results. The analyzed indieesirrderlined in Table 1. In the choice of
the indices under analysis, previous studies were taken into acasumgll as their magnitude of
change (i.e. indices with greater expected change were sileédtese were computed on an annual
and seasonal scale, for the period between 1986 and 2005, thatva|umnper year for the period of
study. This approach has been used, for instance, by Sillmann2@1a). Regarding the seasonal
scale, the following periods were considered: spring (Marchil Apd May), summer (June, July
and August), autumn (September, October and November) and wirdeer(lDer, January and
February). For the winter of 1986, the December of the previarsyesed.

2.3.2. Trendsestimation
Once the indices for the entire domain have been computed, forMRitrand ERA forced

simulations, the seasonal and annual trends were computed usingeth8eh method, also known
as the “median of pair-wise slopes” nonparametric regressibriTL950 Sen, 1968). Since some
of the indices data do not have a Gaussian distribution andese ttases, a simple linear squares
estimation would not be appropriate. Therefore, the statisigalficance of the trends was tested
using the nonparametric Mann—Kendall test (Wilks, 2011) for 0.05 signife level (p-value <
0.05), against the null hypothesis of no trend. In addition, theaspa#ians for the minimum and
maximum temperature were computed for both simulations, alahghair respective trends.

3. Resultsand Discussion

The spatial patterns of the trend for 20 year set of indices armalyzed in order to quantify the
variations in temperature extremes, and to verify the presésesfe of a trend for the period
between 1986 and 2005 (recent past).

3.1. Changesin hot extremes
Recent studies have revealed significant generalized chamgemperature extremes, with a
warming trend in every region of the globe (Manton et al., 2001rdoetet al., 2002, Aguilar et al.,
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2005, Griffiths et al., 2005 and New et al., 2006). Fig. 2 showshbkal986-2005 annual trends in
the number of summer days (SU) is positive in the North for MPl4db#aulation and in the South
for ERA-driven simulation (the trend is statistically significamta 0.05 significance level), with a
maximum of approximately 1 day/year. The differences betwasse ttwo simulations are higher for
the regions where the trends are higher. The annual trends dig duesto strong positive trends
simulated for summer (not shown)

The annual trend in the number of summer days is also complentgntd® TX90p index
(Warm days). Fig. 3 shows the annual trend in warm days for thedgmtween 1986 and 2005. An
increase in the number of warm days of approximately 1 day/yeeemsaver the North and center
of Portugal for WRF forced by MPI and over the North of Algeriali#RF forced by ERA, where
the trend is statistically significant. The MPI-driven simioiatoverestimates the number of warm
days over the North and center of Portugal in comparison with tedERen simulation. The
differences between the simulations (MPI-driven and ERA-drivemuader 0.5 days/year, and in
general both simulations points towards an increase in the numberraf degs over the Iberian
Peninsula.

Looking at the TX90p index (warm days) for winter (Fig. 4), theeddhces between
simulations increase. In general, the MPI-driven simulation gie@ decrease in the number of
warm days for winter of about 0.3 days/year over the Iberian Peningshi&reas ERA- driven
simulation indicates an increase in the number of warm days afa@<lyear. The differences for
winter trends for the period of 1986 to 2005 between MPI-driven and &R&n simulations show
an underestimation of approximately - 0.5 days/year in the numbearof days for simulation MPI
in relation to ERA. For both spring and summer, MPI-driven and ERAliare in agreement when
it comes to the sign of the trend over the Iberian Peninsulaaviténd of the number of warm days
of approximately +0.3 days/year. For summer, as in the SU indexsitiulation forced by MPI
shows an overestimation in the North/ West of Portugal and an undextestinm the South/ East of
Spain, of about +/-0.3 days/year. These are the regions for wich ts a greater difference
between simulations. For the autumn, the MPI-driven shows arasene the number of warm days
in the North and West of the IP of +0.2 days/year and a trend2ofia@s/year in the South and East.
The ERA-driven simulation shows a reduction in the number of wagm, dehich is statistically
significant for most of the domain, with some regions showingceedse of up to 0.5 days / year.

Fig. 5 shows the annual trend of warm nights (TN90p) for the periagebrt1986 and 2005.
The results for the MPI-driven simulation show a maximum t@red the Iberian Peninsula of +0.8
daysl/year, i.e. an increase of 0.8 warm nights / year. 8diens with highest trends are statistically
significant. The biggest differences between the resultsinalokafor simulation MPI-driven and
ERA-driven are found in the South of the Iberian Peninsula, in whiclartheal trend of warm
nights is of approximately -0.3 days/year for ERA-driven, and podiivihe MPI-driven.

For the winter (Fig. 6.), the MPI-driven simulation points ta¥gaa -0.2 days/year trend over
Spain, while over Portugal the trend ranges from zero to +0.1 gags./On the other hand, ERA-
driven has a value of -0.2 days/year in the Southwest of the Ill&gr@Einsula and of +0.3 days/year
in the North and East. For the summer days, the difference inuthber of warm nights for both
simulation. The MPI-driven simulation over the Iberian Peninsulahascrease of 0.3 days/year, a
trend which is statistically significant in the western mdrthe Iberian Peninsula. For ERA-driven,
there are small regions of increase in the number of warmsriigittin general, and especially in the
West, there is a decrease in warm nights. This trend, yeswis not statistically significant. This
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negative trend in the number of warm nights becomes statistiégiiificant in some regions of
Spain in the autumn, with a value of -0.6 days/year, fordkelts for the ERA-driven simulation

There is some inconsistency between the simulated trends nm t@arperature extreme indices,
especially for the autumn days. The MPI-driven simulation does nasemrthe cooling observed
in ERA-driven, with a statistically significant trend of -0.5 daysd nights / year. However, for
winter, the simulation MPI-driven has a more intense coolutggn compared with ERA-driven. But
in general, taking into account only the spatial pattern o&timeial trends between 1986 and 2005,
there is, on average, an increase of + 0.4 days/year of days (TX90p) and nights (TN90p).

3.2. Changesin cold extremes
A study conducted by Karl et al. (1993) suggests an asymmetric waoimliyand TX, which

is later observed by other studies, especially by Simolo gR@l1), which proposes a greater
asymmetry in the distribution of TN, for Europe. In this sectiarid demperature indices are
analyzed. For the annual trend of FD (Frost Days), Fig. 7,ethalts obtained for the simulation
MPI-driven show a decrease in the number of frost days over thaedegiewith some points in
which the trend is statistically significant. There are @sd points with a positive, statistically
significant trend over regions of higher altitude. On the other haedretults obtained for the
simulation ERA-driven suggests a decrease in the number of figstfatathe center of the Iberian
Peninsula, with a value of approximately -0.5 days/year. Howehiar,trend is not statistically
significant.

The annual trend of the number of cold days (TX10p) is shown in Figc8nlbe seen that
for the MPI-driven simulation it has positive and negative vahfe8.2 days/year, i. e., there are
areas with an increase in the number of cold days, and othenateasdecrease in the number of
cold nights of 0.2 days/year. The difference in the annual tremgebr simulations is significant in
some areas. The ERA-driven simulation shows a decrease in tiemnahtold days for the entire
Iberian PeninsulaHowever, this trend is only statistically significanthe tNorth of Spain.

For winter, the MPI-driven simulation (Fig. 9) shows a positiend of + 0.3 days/year over
the Iberian Peninsula, except for a small region in the EagpaihSwhich shows a trend of - 0.1
days/year. The differences between the results in the tremaisiaib for the simulation forced by
MPI and ERA is 0.3 days/year or less, and the results obtaiitedE®RA-driven are, in general,
positive trends. There is an increase in the number of cold daydriter. The difference between
the trends with MPI-driven and ERA-driven simulation for the numbegrotf days is small, and
both simulation suggest a decrease in the number of cold days for wthgsimulations have a
trend of -0.4 days/year over the Iberian Peninsula. This negaging is maintained for summer.
Similarly to the TX90p index (in which the trends in ERA-driven for gutumn show a more
intense decrease in the number of warm days, in comparisotM®itllriven simulation) the ERA
simulations point to a larger increase in the number of cold day#ich the trend over the Center/
South region is of + 0.4 days/year and statistically sicamtic

Fig. 10 shows the annual trend of cold nights (TN10p). For the MPI-dsiwenlation, the
results show an increase in the number of cold nights over the dfdtia Iberian Peninsula, and a
decrease over the South. The differences between MPI andaERAositive in the North and
negative in the South, and of the order of 0.4 gays/
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Fig. 11 shows a variation in the pattern of the seasonal tretldeofN10p index (cold
nights). The results for MPI-driven simulation suggest an inergagold nights over the Iberian
Peninsula, with statistically significant trends in high al&twdgions. For spring, both MPI —driven
and ERA-driven simulations show a trend of -0.7 days/year, whectatistically significant in all
domain. The negative trend in the number of cold nights is also odserttee summer, but with a
value of -0.2 for MPI-driven and -0.3 for ERA-driven, in the Southefste Iberian Peninsula. The
largest difference between simulations is observed in autuitimaywredominantly negative trend in
TN210p for simulation forced by MPI of -0.1 days/year, and a positeredtm the South/ East of 0.4
days/year for simulation forced by ERA. The difference dfuge, reaches 0.5 days/year

Unlike what happened with warm extremes, in which an annualaisena warm days/nights is
simulated over thdberian Peninsulafor cold extremes the model does not show a generalized
decrease in the cold days/nights over the Iberian PeninsultheGsontrary, it shows areas where
there is an annual increase in cold days/nights. In additior iher greater difference between the
MPI-driven and ERA-driven annual trends than in warm extremegerdl studies have suggested
that the inconsistency between simulated results and observatianglained by a temporary
‘hiatus’ in global warming, that is referred to as a winteeq@menon (Cohen et al., 2012; Kosaka
and Xie, 2013). In this study, the model shows, not only a cooling inrwbnie also in the autumn
months. Furthermore, in ERA-driven simulation, this cooling is matense for the autumn
(approximately +0.4 cold days/ nights/year) than for the winter (appateiyn+0.2 cold days/
nights/year). To evaluate if these results depend on the fqidiRnbor ERA) or on the WRF model,
the same indices were calculated for ERA-Interim tentperalata for the period between 1986 and
2005. The trends for the indices obtained using this data set (ER#) also show a more intense
cooling for the autumn months. In recent literature, possible sdaosethis unexpected finding
between simulated results and observation have already been disclissedxplanations put
forward were: a decrease in stratospheric water vapor (Solomah, €2010), an increase in
tropospheric and stratospheric aerosols concentration (Solomog@dtlalKaufmann et al. 2011) or
an internal climate variability manifested via La-Nifa-likecagal cooling in combination with a
vertical re-distribution of heat in the ocean (Meehl et al 2011akasnd Xie2013; England et al
2014).

3.3. TheHiatusPeriod

We computed the average minimum (TNmean) and maximum (TXmeaa)series for the
whole domain, which is shown in Fig. 12. In general, there is aiys$iend in the annual mean.
These results are consistent with previous studies based on masintuminimum temperatures
and their percentiles, which represent an increase in thestatage for theberian Peninsulgfor
instance, Prieto et al. 2004; Brunet et al., 2007;Martinez.,e2010 ;Del Rio et al., 2011), with a
maximum value of TX for the MPI model (0.032 degrees/year). Irtiaddit is seen that the rate of
“observed” warming is slower than the simulated by the model (M5 result is observed in
several studies, especially the one carried out by Fyfe e{28l3), which mentions the
overestimation of global warming over the past 20 years (1993-26i®yever, there is no
agreement on the period for which this overestimated global imwgrotcurred, with it varying
between 1996 and 2010 (Silmann et al., 2014) or from 2000 to 2009 (bteh(2011)).

Unlike what happens for the annual means, the seasonal time fe#rthe autumn and winter
show negative trends.

Fig. 13a shows the TN and TX time series and their respeiténds for the winter days. There
is a negative trend for both the TN and the TX, which indicates eeake in the minimum and
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maximum temperature during winter. For TX, the negative trerdue to the last few years, from
1999 to 2005 (warming hiatus). If we were to remove this periodpliserved trend would be
positive. Also, the model is able to detect this cooling with genylar trends: MPI with a trend of -
0.023 degrees/year and ERA with -0.024 degreesl/year.

When it comes to winter days TN, the difference betwe&A-Hriven and MPI-driven
simulation increases, with MPI showing a larger negative trBetlveen 1999 and 2005, ERA-
driven simulation of TN shows a decrease in temperature, whierds®1-driven the negative trend
is due to the “flattening of the normal distribution”, which metfyad this negative trend observed in
MPI is not due to a clear decrease in temperature {heemodel does not simulate tharming
hiatus). For the autumn days, the time series (Fig. 13b)) shatv§iPI-driven has a positive trend,
showing an increase in temperature, whereas ERA-driven has avadgatid. The differences are
more significant for TX than for TN.

4. Conclusions

The goal of this study was to analyze the trends in the exttemeerature indices over the
Iberian Peninsulausing downscaling simulations forced by the MPI-ESM-LR (MRi) &ra-
Interim (ERA), for the period between 1986 and 2005 (recent pastimaheconclusions obtained
from this study are the following:

- For hot extremes:

In general, an increase in the annual number of extreme wamtsevas detected (summer days
(SU), warm days (TX90p) and warm nights (TN90p)).

The annual trends of the warm extreme indices are mostly dhe toend simulated for spring
and summer.

The autumn and winter seasonal trends are the ones withdhstldifference between simulated
and “observed” (ERA-driven simulations) values which was unaggddor autumn.

The ERA-driven simulation has statistically significant negattrends over thelberian
Peninsula with warm days (TX90p) and warm nights (TN9Op) displaying a decredse
approximately 1 day/year. For winter, the MPI-driven simulation sheowsgative trend for TX90p
that is statistically significant in some regions, whichasthe case in the ERA-driven simulations.

- For cold extremes:

The annual trends obtained for the cold temperature extremesasgmeater disparity between
simulated for ERA-Interim and MPI.

The results simulated for MPI-driven show regions with positigads, pointing to an increase
in cold temperature extremes, especially for cold days (TXXtypgald nights (TN10p).

The seasonal trends obtained for spring indicate a decrease in ther mififinbst days, cold days
and cold nights, with areas where these trends are stalysticalificant. Especially for cold nights
(TN10p), which have an increase of approximately one day/year.

For summer, the negative trends are as observed for springrelenaent with the hot extremes
indices, in general, the trends for the autumn are positiveh®ERA-driven simulation and of
opposite sign for the MPI-driven simulation, for the indices showthisgnwork.

For the winter months, the MPI-driven simulation showed a stailstisignificant increase in
frost days and cold nights in the regions with higher altitude thedberian Peninsula

For the ERA-driven simulation, the trends for the indices of cxiicemes, are generally positive
but these are not statistically significant and in some areagrehds are negative. In spite of the
agreement between the results of the MPI and ERA driven siongdathis increase in the number
of cold days and nights was not expected, and may be due to thindtache hiatus period is
included in the study period.
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- TNmean and TXmean time series:

When the trends are determined based on linear regression,abs&sed that if the data have
an irregular evolution in time this method would have few limitatiofisese limitations were
identified in a paper by Tomé and Miranda (2004), where it is mettithmat this approach, although
commonly used in variability studies, is not able study the distributioclimfate breakpoints in
space and time.

The annual trend for the TN and TX simulations is higher for the -BRAn simulation. A
higher trend for TX in relation to TN was observed for both simulafa/RF forced by ERA and
MPI). The seasonal trends of TN and TX for winter, both for ERen and MPI-driven
simulations, are negative. Several studies (Brunet 2@08§; Brunet et al., 2007; El Kenawy et al.,
2011; de Lima et al., 2013;) indicate a heating trend, so thativeggends for TX and TN, which
point to a decrease in the winter temperature, were unexpéttese trends may be due to the fact
that the warming hiatus is included in the period at study, leadiaghemative trend. Furthermore,
may also be a factor that the method used does not take intmatioe discontinuity points between
trends with opposite signs.

For autumn, the trends in TN and TX for ERA-driven and MPI-drivenukaitions have a large
difference. ERA has a negative trend, whereas MPI has apdsénd. The literature reports on the
occurrence of the warming hiatus as a winter phenomenon, althocgyh start in autumn. For this
reason, the biggest decrease in the TX variable, of -0.02&3€ is observed for autumn.
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Table 1. List of all extreme temperaturesindices. The present study concentrated on those indices that
areunderlined

ID Name Definitions Units
SsuU Summer days Annual count when TX > 25 °C days T
TR Tropical nights Annual count when TN >20 °C days e
TXX Max TX Maximum value of daily TX °C g
TXn Min TX Minimum value of daily TX °C g
TN90p  Warm nights Percentage of days when TN>90th percentile of 12865 days o
TX90p Warm days Percentage of days when TX>90th percentile of 12865  days
Cold spell duration  Annual count of days with at least 6 consecutiwsdahen
CSDI . . days
index TN < 10th percentile
FD Frost days Annual count when TN <0 °C days o
ID Ice days Annual count when TX <0 °C days %
TNx Max TN Maximum value of daily TN °C m
TNn Min TN Minimum value of daily TN °C g
TN10p  Cool nights Percentage of days when TN<10th percentile of 12865 days 3
TX10p Cool days Percentage of days when TX<10th percentile of 12865  days &
WSDI Warm spell duration Annual count of dgys with at least 6 consecutiwsdahen days
index TX > 90th percentile
DTR zz;al temperature Yearly mean difference between TX and TN °C % g
ETR Extreme temperature Difference between TXx and TNn °C % %
range Z
Growing season A_nnual count of days.between the first span oéast 6 dgys
GSL with Tihean> 5°C and first span after 1 July of 6 days with days

length

Tmean< 5°C




